

Fillet Contaminants
PCB 5X Lower
Mercury 4X Lower
FCR 1.46

Sustainability: Challenges

- Complete independence from natural stocks through DOMESTICATION
- 2. Improved / more cost-effective SEED PRODUCTION
- 3. Better targeted SPECIES SELECTION
- Development of more efficient stocks through SELECTIVE BREEDING
- 5. More MICROBIAL MANAGEMENT for more sustainable production
- Better understanding of IMMUNE SYSTEMS in vertebrates and invertebrates
- More INTEGRATED PRODUCTION SYSTEMS for plant and animal farming
- 8. COASTAL AND OFF-SHORE FARMS of food and energy
- Full independence from fisheries stocks for LIPID AND PROTEIN INGREDIENTS in aquatic feeds
- More attention for INTEGRATION of restocking activities with FISHERIES management
- 11. SOCIETAL LEVERAGE:
 - multi-stakeholder interaction
 - International cooperation on a win-win basis

Aquaculture, The Blue Biotechnology of the Future
Patrick Sorgeloos
World Aquaculture, 2013

Turning Carnivorous Fish into Vegetarians

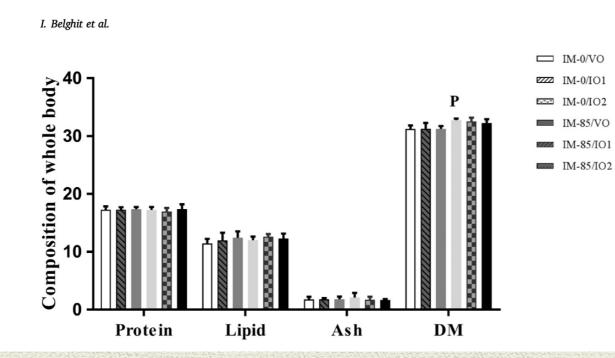
nttp://www.gizmag.com /fishless-fish-

Why Salmon Eating Insects Instead of Fish Is Better for Environment

Companies in Europe have developed new kinds of feed for salmon farms that could help the environment—if they can scale up quickly.

Contents lists available at ScienceDirect

Aquaculture


journal homepage: www.elsevier.com/locate/aquaculture

Potential of insect-based diets for Atlantic salmon (Salmo salar)

Ikram Belghit^{a,*}, Nina S. Liland^a, Rune Waagbø^a, Irene Biancarosa^{a,b}, Nicole Pelusio^c, Yanxian Li^d, Åshild Krogdahl^d, Erik-Jan Lock^a

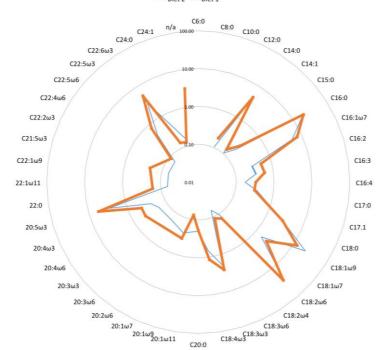
Aquaculture 491 (2018) 72-81

Fig. 2. Composition of whole body (% of wet weight) of freshwater Atlantic salmon fed a control diet (IM-0/VO) or diets containing IM and/or IO1 or IO2 for a period of 8 weeks. Values are means, with their standard deviation represented by vertical bars. P, significant effect of dietary protein source. O, significant effect of dietary lipid source. P × O, interaction between the main effects of the two factors (P < 0.05, two-way ANOVA).

DM; $P \le 0.01$, O = 0.75, $P \times O = 0.75$.

^a Institute of Marine Research, P.O. Box 1870 Nordnes, 5817 Bergen, Norway

^b University of Bergen, Department of Biology, Thormøhlensgt. 53 A/B, P.O. Box 7803, 5020, Bergen, Norway


^c Department of Life and Environmental Science (DISVA), Universitá Politecnica delle Marche, Ancona, Italy

d Department of Basic Sciences and Aquatic Medicine, Faculty of Veterinary Medicine, Norwegian University of Life Sciences (NMBU), Oslo, Norway

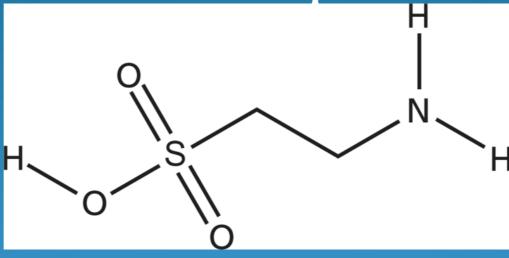
atty Acid Composition

— Diet 2 — Diet 1

Atlantic Salmon Diet

Insect Digestibility Protein 89 ± 3.84 Lipids 92 ± 3.84

Diet 2


Moisture	3.85 %
Protein (crude)	46.07 %
Fat (crude)	15.71 %
Fiber (crude)	2.69 %
Ash	8.30 %

Code		Description	Actual	Percent
5592700		Profine VF	575.0000	28.7500
9008600	0	AP INSECT MEAL-CO	466.6000	23.3300
5522000		CN GLUTEN 60%	306.8000	15.3400
4463000		WHEAT FLOUR BAGGED	300.8000	15.0400
3422100		MENH GOLD OIL TOPDRESS	119.2000	5.9600
6610400		MONOCALCIUM PHOSPHATE FG	79.0000	3.9500
3430000		LECITHIN FG	60.0000	3.0000
8302000		TAURINE 98.5% FG	30.0000	1.5000
8877000		L LYSINE 98.5%	15.0000	0.7500
7758000		CHOLINE CL-70%	12.0000	0.6000
6626000		POTASSIUM CHLORIDE (DYNA K) FG	11.2000	0.5600
8880000		DL METHIONINE 99	9.0000	0.4500
6636000		SALT	5.6000	0.2800
7769200		TIGER C-35	4.0000	0.2000
9076620		PREMIX AQUA-VIT	2.4000	0.1200
9098000		PREMIX AQUA-MIN FISH	2.4000	0.1200
6641000		MAGNESIUM OXIDE FG	1.0000	0.0500

Taurine

The missing ingredient for development of fish

free diets for aquaculture?

Supplement Facts

2000%

100%

8333%

-1%

itamin B6 (as Pyridoxine

Hydrochloridel 40mg

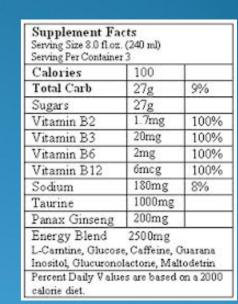
ergy Blend 1870mg

Taurine, Glucuronic acid (as or from

glucuronolactone), Malic Acid, N-Acetyl

Other Ingredients: Purified Water; Natural and Artificial Flavors: Sucralose: Potassium

Sorbate, Sodium Benzoate and EDTA (to protect freshness).

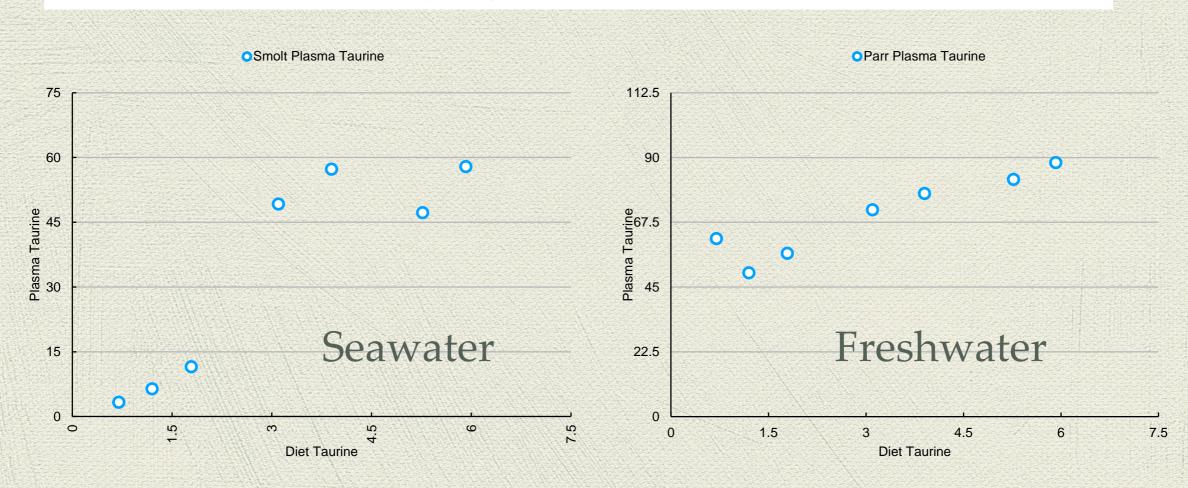

Tyrosine, L-Phenylalanine, Caffeine

olic Acid 400mcg

tamin B12

Aaron Watson, Ph.D. Rick Barrows, Allen R. Place

Institute of Marine and Environmental Technology
University of Maryland Center for Environmental Science



Atlantic salmon (Salmo salar) require increased dietary levels of B-vitamins when fed diets with high inclusion of plant based ingredients

Gro-Ingunn Hemre¹, Erik-Jan Lock¹, Pål Asgeir Olsvik¹, Kristin Hamre¹, Marit Espe¹, Bente Elisabeth Torstensen¹, Joana Silva², Ann-Cecilie Hansen¹, Rune Waagbø¹, Johan S. Johansen³, Monica Sanden¹ and Nini H. Sissener¹

³ GIFAS, Inndyr, Norway

¹ National Institute of Nutrition and Seafood Research (NIFES), Bergen, Norway

² Biomar, Trondheim, Norway

Take Home Lessons

- Aquaculture has the potential to feed the world
 - Must be done in environmentally and economical sustainable manner
 - Harmful Algal Blooms could prevent aquaculture from reaching its true potential

Limiting Resource

