National Cold Water Marine Aquaculture Center Update

Brian C. Peterson, Ph.D. Research Leader National Cold Water Marine Aquaculture Center Franklin, ME

Outline

• Importance of Aquaculture

• USDA-ARS Aquaculture Research Programs

• NCWMAC-Franklin, ME

The average American eats 15 lbs of seafood each year.

The world average is 12 lbs per person.

The U.S. is the 3rd greatest seafoodconsuming country, behind only China and Japan.

85% of America's seafood is imported.

We are the world's 2nd largest importer of seafood.

-Japan is 1st

Seafood is our largest trade deficit of any agricultural product.

FAO 2018

Change trade deficit?

We could produce more fish.

-Land based aquaculture.

- -Atlantic Sapphire
- -Superior Fresh
- -Riverence
- -Whole Oceans
- -Nordic Aquafarms
- -Aquabanq
- -Kingfish Zeeland, American Unagi

Maine aquaculture is the world's fastest growing sector.

-Increased 6.2% from 2010-2017

Total economic impact of Maine sea-farming grew from \$50 million to \$137 million.

University of Maine Economic Report 2017

ARS Aquaculture

Mission: To conduct relevant research and deliver technologies that improve domestic aquaculture production efficiency and product quality while minimizing impacts on natural resources.

- 13 projects
- 47 scientists
- ~9 funded collaborators
- 10 laboratory sites
- Budget: ~\$35 Million
- Freshwater and Marine Systems

Atlantic salmon

- Breeding program began in 2003
- Spawn every year to produce new year class
- Have data on growth and selection for carcass weight for 8 year classes over 4 generations
- Penobscot strain used as control line

Atlantic salmon

- St. John strain
- North American origin must be tested
- Used by industry partner (Cooke Aquaculture)
- Gaspe strain-may be more adapted to RAS?

Selective Breeding Program

- Atlantic Salmon (St. John strain)
 - Pedigreed family program
 - Selection based on, on farm performance & challenge trials

Growth

Fillet Color and Fat

Sea Lice Resistance

Two "Groups" In Breeding Program

<u>Nucleus group</u> – all families in breeding program – up to 234 YC growth rate is reported for all families <u>Multiplier group</u> – best performing families – become broodfish for industry Growth rate for multiplier offspring should be higher than nucleus

Year class	Weight Nucleus (Kg)	Weight Multipliers (Kg)
2007	3.67+0.15	5.45+0.14
2008	5.02+0.05	4.88+0.07
2009	5.74+0.03	5.76+0.08
2010	4.04+0.02	5.81+0.03
2011	5.84+0.04	6.25+0.08
2012	5.82+0.02	6.15+0.12
2013	6.02+0.14	6.55+0.04
2014	5.89+0.04	6.65+0.10
2015	5.92+0.13	6.75+0.03

Atlantic salmon

•Multiplier eggs given to Cooke Aquaculture

•Provide 600K-1 million eggs/year

Spawning

Fertilize Eggs

Incubate and Hatch Eggs

PIT Tag

- 30/family-broodstock
- 30/family net pens
- 15/family sea lice challenges

Smoltification

- 24 hr challenge
- Measure Cl⁻ levels in blood
- Net pen fish vaccinated

Family Evaluations in Net Pens

- 3,500-4,500
 - -Smolt transfered to net pens
 - -Comparisons under industry conditions
 - -Harvest ~1.5 yrs later

Improved Salmon Genetics

	Date Harvested	No Fish Processed	USDA SJR Carcass Wt (kg)	Penobscot (Control) Carcass Wt (kg)	% Increase Penboscot
2007	14-Feb-07	3021	4.60±0.058	2.68 <u>+</u> 0.095	71.6
2007	23-Oct-07	3611	4.56±0.075	2.90 <u>+</u> 0.041	57.2
2008	24-Jun-08	2251	4.85±0.050	2.80 <u>+</u> 0.200	88.5
2009	4-Feb-09	2431	5.04±0.077	2.35 <u>+</u> 0.077	114.4
2010	15-Dec-10	984	3.67±0.15	1.52 <u>+</u> 0.133	141.4
2012	7-Aug-12	907	5.02±0.053	2.71 <u>+</u> 0.27	85.2
2013	1-May-13	1661	5.74±0.0327	3.13 <u>+</u> 0.14	85.6
2014	27-Jan-14	1676	4.04±0.020	2.32 <u>+</u> 0.082	74.1
2015	5-Aug-15	651	5.85±.047	3.07±0.30	90.6
2016	15-Sep-16	321	6.84±0.073	4.25±0.048	60.9
2017	14-Jun-17	1724	6.65±0.042	2.65±0.167	150.9

Family Evaluations

Sample fish at processing -Weight, length, maturity -Fillet color and fat

EBVs Calculated

Nutrition Research

- Testing alternative protein sources with commercial partners
- Yeast, algae, soy protein concentrate
- Testing functional feeds to reduce sea lice

Genomic Research

- Re-sequencing project-NA Atlantic salmon for SNP discovery
- 6.6 million SNPs
- Develop genomic EBV
- Identify and screen for genetic markers

Sea Lice Research

- $h^2 = .20$
- Offspring of "sea lice resistant" fish tested 2019.
- Develop genetic markers or tools to estimate genetic breeding values.

2017 Average of Lice Density

Gaspe Strain Research

- Selected for growth in tanks
 - -Performance in net pens?
 - -Performance in RAS?

-New breeding program at NCWMAC?

Growth Study

- Treatments
 - -St. John River
 - -Gaspe
 - -Hybrid (O'Gaspe x Q St. John)

Objectives

Wt gain, FCR,
survival
Proximate analysis
FA analysis

Tank Set Up

- <u>Strains</u>
 - -St. John River
 - -Gaspe
 - -Hybrid (O'Gaspe x Q St. John)

- Water
 - -freshwater
 - -32 ppt

- ~260 g/fish
- Fresh and salt water
 -0 vs 32 ppt
- Temperature ~13C
- 16 week study

Methods

- Fed a commercial diet
 Automatic feeder
- Weighed twice
- -3 proximate and FA analysis

Growth Performance

Strain	Initial Weight (g/fish)	Final Weight (g/fish)	% Increase	FCR
Gaspe-Fresh	218.9	436.5	99.4	1.02 ± 0.05
Gaspe-Sea	231.1	384.6	66.4	1.06 ± 0.07
Hybrid-Fresh	248.3	460.4	85.4	1.10 ± 0.04
Hybrid-Sea	224.4	381.2	69.9	1.08 ± 0.08
St. John-Fresh	290.5	471.4	62.3	0.99 ± 0.03
St. John-Sea	276.3	445.2	61.1	1.00 ± 0.06
P values				
Strain			0.06	
Water			0.03	
Strain * Water			0.17	

Summary

• Single strain

-Gaspe grew better in fresh vs sea water -St. John and hybrids grew similar

• FA and Proximate Analysis

-Similar among treatments

• St. John strain selected for growth in net pens performed well in fresh and sea water RAS

• NCWMAC may not need to start new breeding program for Gaspe

Lumpfish Program-2015

Lumpfish Research

Lumpfish nutrition

Lumpfish reproduction

Select for lumpfish that eat sea lice

Acknowledgements

Staff at NCWMACJim HuntMelissa Milligan