Atlantic Salmon Production in Recirculating Aquaculture Systems (RAS): Economic Analysis and Feasibility

Economics Work Group 2nd Annual RAS-N Workshop October 8, 2020

RECIRCULATING AQUACULTURE SALMON NETWORK Sustainable - Innovative

RAS Salmon Overview RAS salmonid production represents an emerging sector of the overall aquaculture industry

Aquaculture Trends

- Atlantic salmon has become the leading species for marine finfish aquaculture (32.4 million pounds) in the United States
- The vast majority of Atlantic salmon consumed is imported (844.5 million) pounds) (NOAA NMFS, 2020)

U.S. production of salmonids in RAS could... \rightarrow

- Generate increased economic activity (Lipton et al. 2019)
- Reduce the U.S. seafood trade deficit
- Reduce environmental impacts compared to traditional aquaculture

Stochastic Economic Simulation Model

Exploring the economics of RAS Atlantic salmon production from egg to market size in the U.S.

- Key Deliverable: Calculate ten-year Net Present Value (NPV)
 - Accounting for in-flows (sales), outflows (head-on gutted Atlantic) salmon RAS production cost), and time
 - Model will consider a hypothetical 5,000MT facility
- Compare the RAS production costs and product price to similar net-pen production monetary outcomes
- Uncertainty in production performance will be captured by using Monte Carlo simulations

Data Needs

- Estimates for several cost categories for both capital expenses (ex. RAS technology & land) and operating expenses (ex. feed & electricity) of a hypothetical 5,000MT facility
- Cost categories developed through multiple discussions and collaboration of the RAS-N consortium and economics work group

Questionnaire

RAS Industry experts will be asked to provide their best estimate for plausible ranges of expenses for a hypothetical 5,000MT firm.

Feedback

- Under review by individuals familiar with both the technological aspects of RAS as well as the sales and distribution of salmonids
- Incorporated questionnaire feedback to ensure that necessary data can be collected to run the stochastic economic model

Response Maximization

- Invitation letter has been developed and an invitation strategy has been decided with a focus of response maximization
- Deploying succinct survey through Survey Monkey later this Fall

Path Forward

- Soliciting one more round of feedback on the industry questionnaire before sending to the industry (Target Date: November 2020)
- Complete stochastic simulation model with sensitivity analyses and NPV estimates (Target Date: March 2021)
- Pursue additional research opportunities contingent on needs identified in the panel discussion and subsequent discussions (Target Date: Ongoing)

RAS-N Economic Work Group

NAME

EMAIL

Scott Knoche Kaitlynn Ritchie Chris Hlubb Brian Vinci Bill Hubbard Matt Parker Doug Lipton Jonathan van Senten scott.knocheemorgan.edu kaitlynn.ritchieemorgan.edu chlubb1egmail.com bvincieconservationfund.c whubbardeumd.edu mparke11eumd.edu douglas.liptonenoaa.gov jvansentenevt.edu

PROGRAM

<u>1</u>	MSU PEARL
du	MSU PEARL
	Salmo
org	FWI
	MDSG
	MDSG
	NOAA Fisheries
	Virginia Tech