

EARLY MATURATION OF ATLANTIC SALMON IN LAND-BASED CLOSED CONTAINMENT RAS Christopher Good, DVM PhD

Background: Atlantic salmon growout trials

Grilsing

A significant initial hurdle for land-based salmon production

Historical background

- Long history of maturation affecting Atlantic salmon production:
 - Major source of economic loss for farmers
 - Johnston et a., 2006; McClure et al., 2007
 - \$11M 24M in annual lost revenue
 (\$250M industry)
 - McClure et al., 2007
 - In-cage grilsing estimated at 20-30% (1998-2002)
 - Peterson et al., 2003

Salmo salar: A highly flexible life history

> Many variations in life history traits among and within populations

- Freshwater occupancy/age at smoltification (Randall et al., 1987; Økland et al., 1993)
- Time of ocean residency and age at reproductive maturity (Scarnecchia, 1983; Saunders, 1986; Thorpe, 1986)
- Adult size at maturity (Hutchings and Jones, 1985; Saunders, 1986)
- Non-anadromous versus anadromous forms (Berg, 1985).
- Evolutionary strategy designed to maintain biodiversity and genetic contribution of a cohort (Saunders and Schom, 1985).
- Evolutionary adaptation to optimize reproductive success and to perpetuate the species (Fleming, 1996; Thorpe et al., 1998).
- The Atlantic salmon life cycle is motivated by procreation and recruitment of successive generations.

Salmo salar: A highly flexible life history

- The path to reproductive maturity is likely triggered by a combination of heritable, physiological/biochemical, and environmental factors and their interactions.
- Saunders (1986) proposed that <u>genetic</u> influence provides a basis for maturation but with "rather wide latitude," when the appropriate <u>environmental and</u> <u>physiological/biochemical conditions</u> are met.
- Mangel and Satterwaite (2008) described <u>optimization of environmental conditions</u> as creating an opportunity for maturation along with traits that typically parallel optimal growth performance, such as the accumulation of adipose tissue.

Maturation in Atlantic salmon

Sexual maturation in S. salar:

- A highly flexible process, influenced by
- Photoperiod
- Water temperature
- Feed intake
- Nutrition
- Lipid reserves
- Growth rate
- Stock genetics
- Etc.

Grilsing

Negative consequences of maturation

- Decreased growth and feed conversion
- Reduced product quality
- Increased susceptibility to opportunistic infections

Male Atlantic salmon 1,200g – 1,800g

	Euro 6	Euro 7
Thermal Growth Coefficient	1.67	1.94
Feed Conversion Ratio	1.16	1.07
Time to reach 4 Kg	~25.1 months	~21.7 months
Maturation	67%	13%

All-female Atlantic salmon

Gonads In Situ All-female Atlantic salmon, ~2-3 kg

Gonads

All-female Atlantic salmon, ~2-3 kg

Current state of the industry...

- Producers are becoming more aware of the effects of temperature, and reducing temperature is showing significant results
- RAS post-smolt production (Norway) continues to have issues with "stealth-mature" post-smolts (200-300 g)
- Current research at FI: determining if there is a smolt / post-smolt size threshold for temp-induced maturation

Conservation Fund

Acknowledgements

The Freshwater Institute Team

Abhinav Choudhury, Scott Tsukuda, John Davidson, Christine Lepine, Travis May, Curtis Crouse, Anna DiCocco, Natalie Redman, Megan Murray, Kata Sharrer, Shanen Cogan, JC Stanley, Laura Bailey, & Brian Vinci

Norway

Tom Ole Nilsen, Lars Ebbesson, Sigurd Handeland, Sigurd Stefansson, Bendik Terjesen, Lill-Heidi Johansen, Kevin Stiller, Åsa Maria Espmark

Contact information: cgood@conservationfund.org

Ctrl/QU/