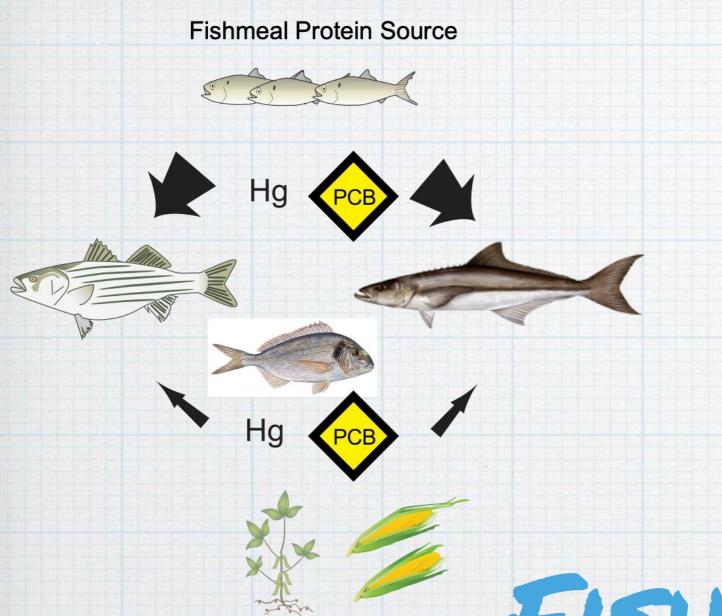


38 YEAR5

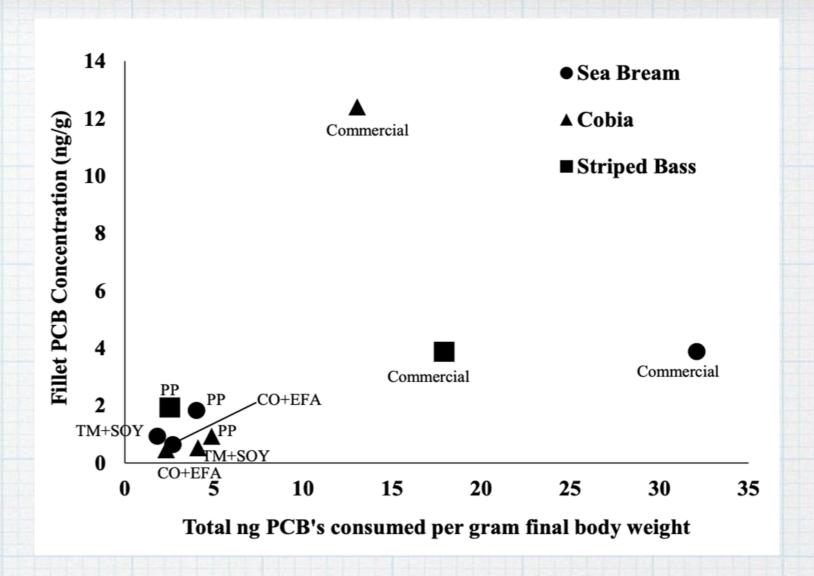
RECIRCULATING AQUACULTURE SALMON NETWORK

Sustainable • Innovative

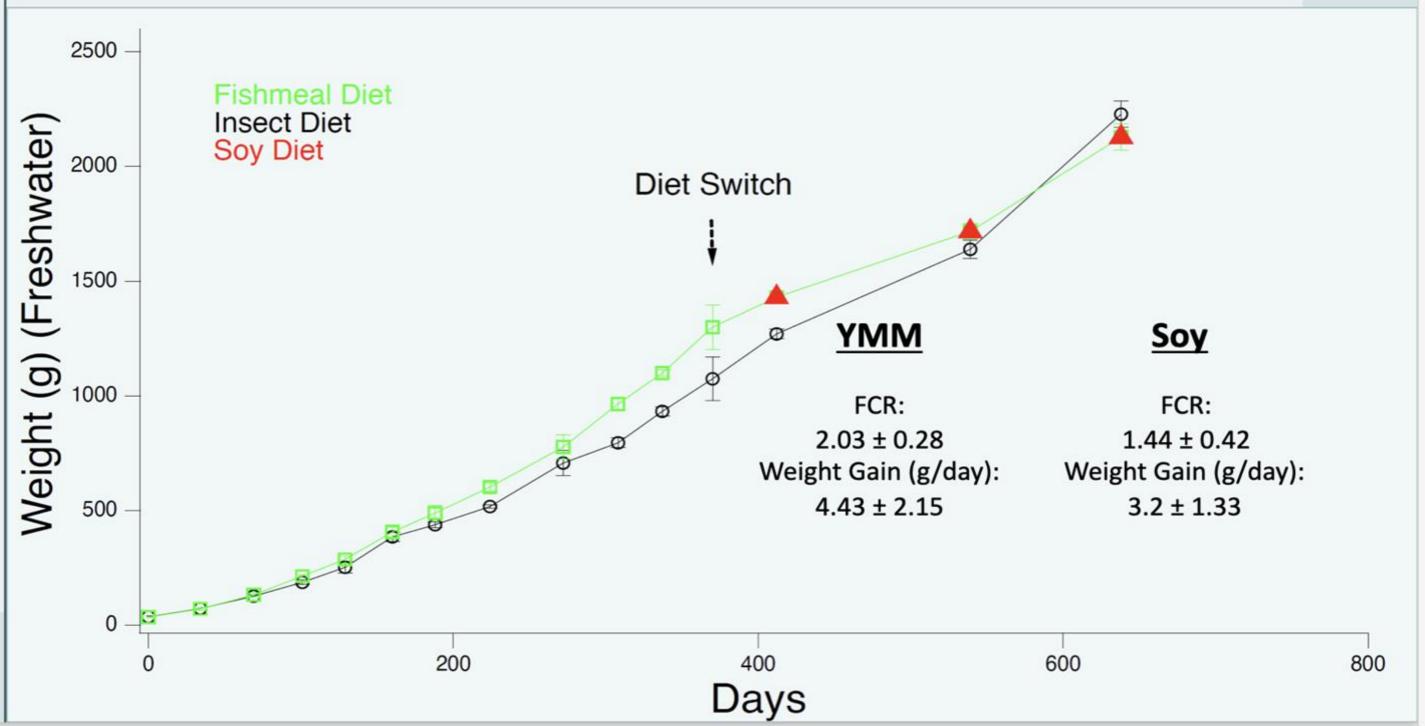
Sustainable
Aquaculture Systems
Supporting
Atlantic Salmon



ALTERNATIVE AND RAS FEEDS



Plant Based Protein Source



FISHMEAL FREE DIETS

REMOVING CONTAMINANTS FROM FILLETS

Diet Switch from Fishmeal to Soy

Replacing Soy with Black Soldier Fly Larvae (H. illucens)

The Problem:

Plant protein falls short when replacing higher amounts of FM because of the presence of antinutritional factors, high content of crude fiber, and imbalance amino acid profile (Francis, 2001)

BSF Aquafeed

54838	300	UMCES Salmon Diet	Insect Meal 10/4/2	2023
Code		Ingredient Name		Pct
44630	000	WHEAT FLOUR BAGGE	D	28.00
90086	000	U of MD INSECT MEAL	-co -	25.00
5584000		WHEAT GLUTEN	12.41	
5522010		EMPYREAL CN Protein	12.00	
5507000		BLOOD FLOUR	7.50	
3449000		ALGAL OIL	4.50	
3446001		CANOLA OIL Topdress	4.49	
6620000		MONOSOD PO4 XP4	3.25	
88770	000	L LYSINE 98.5%	1.20	
8880000		DL METHIONINE 99	0.65	
8302000		TAURINE 98.5% FG		0.50
8305000		L-Threonine (FG)		0.16
90766	20	PREMIX AQUA-VIT		0.15
9098000		PREMIX AQUA-MIN FISH		0.15
8827410		GUAR GUM		0.03
8874600		ASTAXANTHIN 10%		0.01
No.	Nu	trient Name	Units	Actual
28	PR	OTEIN	%	45.2610
48	FA	T, TOTAL	%	12.0603
60	CR	UDE FIBER	%	3.4645
67	AS	Н	%	5.9196
69	PH	OS TOTAL	%	1.2078
84	M	DISTURE	%	6.9440
85	NF	E	%	20.9578
108	ST	ARCH	%	20.9760
133 Starch BF TD		arch BF TD	%	20.9760

Soy Protein Aquafeed

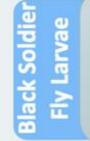
5483820	00 UMCES Salmon Diet Contro	10/4/2023		
Code	Ingredient Name	-7 -34	Pct	
4463000	WHEAT FLOUR BAGGED		25.42	
5592600	HP 300 SOYA PROTEIN		25.00	
5584000	WHEAT GLUTEN		12.98	
5507000	BLOOD FLOUR		10.00	
5522010	EMPYREAL CN Protein Conc		10.00	
3446001	L CANOLA OIL Topdress		6.00	
3449000	ALGAL OIL		4.50	
6620000	MONOSOD PO4 XP4		3.25	
8877000	L LYSINE 98.5%		1.20	
8880000	DL METHIONINE 99		0.65	
3302000	TAURINE 98.5% FG		0.50	
305000	L-Threonine (FG)		0.16	
9076620	PREMIX AQUA-VIT		0.15	
9098000	PREMIX AQUA-MIN FISH		0.15	
3827410	GUAR GUM		0.03	
3874600	ASTAXANTHIN 10%		0.01	
Vo.	Nutrient Name	Units	Actual	
28	PROTEIN	%	45.0373	
18	FAT, TOTAL	%	12.3918	
50	CRUDE FIBER	%	1.6402	
57	ASH	%	5.6770	
9	PHOS TOTAL	%	1.1769	
34	MOISTURE	%	7.4734	
35	NFE	%	19.0832	
108	STARCH	%	19.9900	
133	Starch BF TD	%	19.9900	

Final Takeaways

Mealworm Yellow

Pros

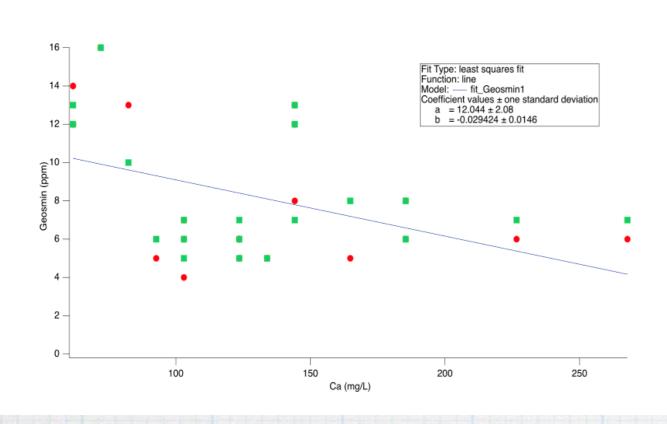
- **Excellent digestibility**
- High purity chitin as secondary product

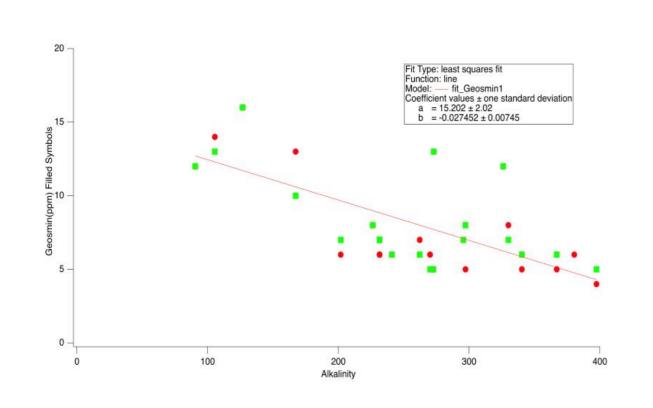

Cons

- Long grow-out times (2-3 months)
- Unable to enhance **PUFA**

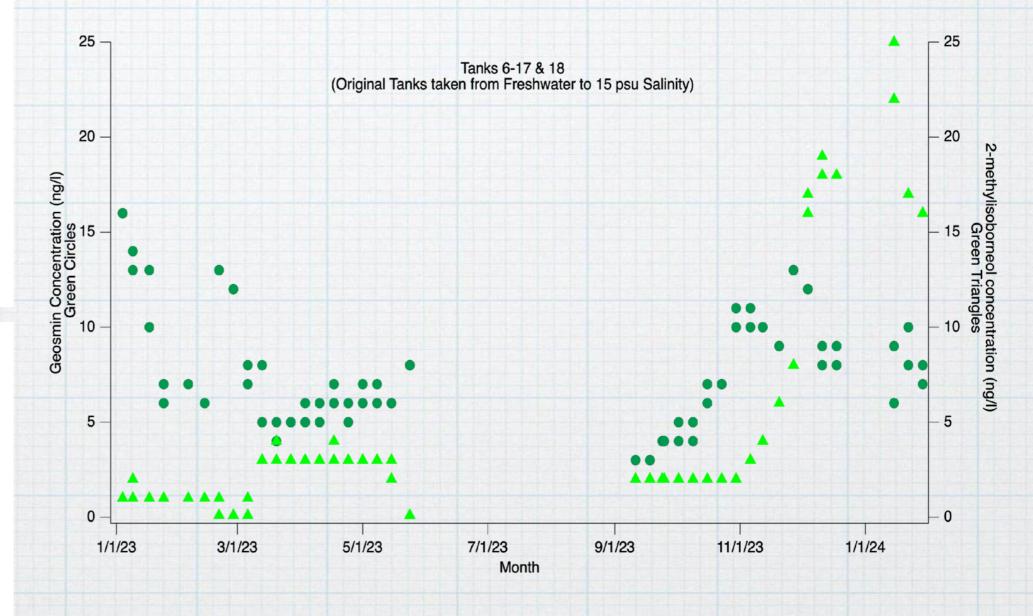
- Can enhance lipid profile
- Allow for controlled pupation

Longest grow-out time (3-5 months)


- Diet versatility
- Shortest grow-out time (21 days)
- Contains some omega-3 fatty
- acid*


- Highest chitin content
- Potential for causing hepatic steatosis

*Still requires algal oil supplementation for Atlantic salmon diet

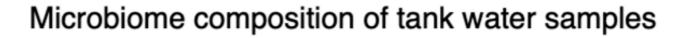


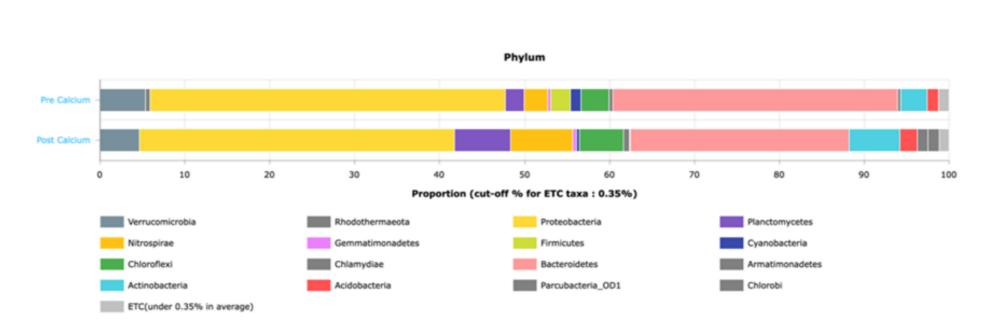
ALKALINITY V5 OFF

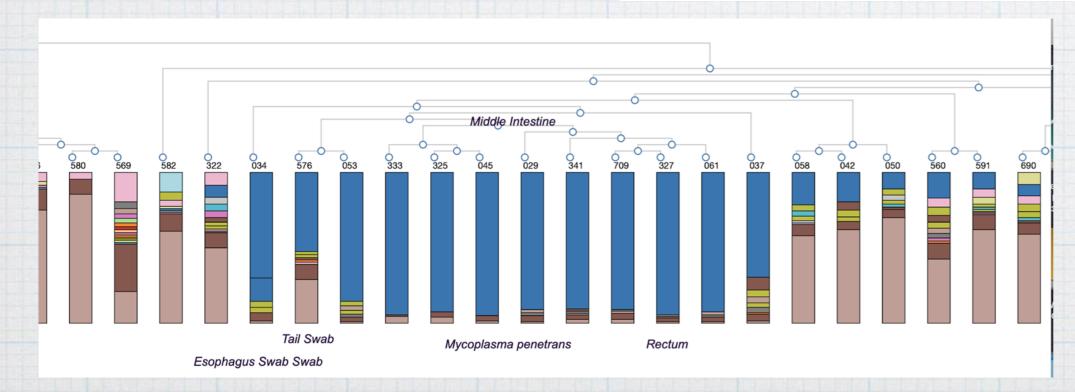
FLAVOR

Sustainable Aquaculture Systems Supporting Atlantic Salmon ISOLATION OF FRESHWATER RAS

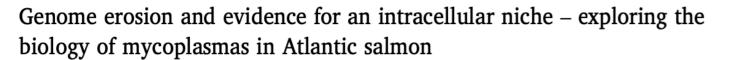
BACTERIA


FRESHWATER RAS


IMET ID	Organism	Upload	Geosmi n Synthas e	2MIE
035A	Streptomyces papulosus	+	+	+
036A	Nocardia asteroides	+	+	+
038A3	Pantoea septica	+	-	-
039A	Vibrio plantisponsor	+	-	-
047A	Rhodococcus_b sp002259485	+	-	-
055A1	Pseudomonas ytbd	+	-	-
057C1	Pseudomonas ytbd	+	-	-
061A	Pseudomonas ytbd	+	-	-
062A1	Moraxella_a cinereus	+	-	-
063A	Moraxella_a cinereus	+	-	-
066A	Gordonia sp000143885	+	-	-
067A1	Gordonia sp000143885	+	-	-
068A	Mycobacterium ytbd	+	-	_
071A	Microbacterium sp000800925	+	-	-
073A	Mycobacterium ytbd	-	N/A	N/A
077A	Micrococcus luteus	+	-	-
078B	Micrococcus luteus	+	-	-
081A	Mycobacterium ytbd	+	-	-
082A	Rhodococcus_b sp001647195	+	-	-
082B	Rhodococcus_b sp001647195	+	-	-
083A	Rhodococcus_b sp001647195	+	-	-
084A	Gordonia sp002009645	+	-	_
086C1	Pseudomonas_e reinekei	+	-	-
088C1	Shewanella baltica	+	-	-
088D1	Rhodococcus_b sp001647195	+	-	-
088F1	Rhodococcus erythropolis	+	-	-
089A1	Mycobacterium ytbd	+	-	-
098A1	Mycobacterium chelonae	+	-	-
099A1	Micromonospora aurantiaca	+	+	-
100A1	Pseudomonas ytbd	+	-	-
100B1	Pseudomonas_e borbori	+	-	-
101A1	Ensifer sp000799055	-	N/A	N/A
101B1	Pseudomonas_e hunanensis	-	N/A	N/A
102B1	Paenarthrobacter histidinolovoran	+	-	-
001	Stenotrophomonas sp	+	-	-


002	Shewanella sp002838165	+	-	-	
003	Staphylococcus caprae	+	-	-	
004	Lelliottia amnigena	+	-	-	
005	Micrococcus luteus	+	-	-	
006	Pseudomonas_e lurida	+	-	-	
007	Micrococcus luteus	+	-	-	
800	Bacillus_ab infantis	+	-	-	
009	Pseudomonas_e lurida	+	-	-	
010	Pseudomonas_e lurida	+	-	-	
011	Streptomyces cellulosae	+	+	-	
012	Nocardia asteroides	+	+	+	
014	Hafnia alvei	+	-	-	
015	Hafnia alvei	+	-	-	
022	Shewanella baltica	+	-	-	
023	Brevibacterium sp018137945	+	-	-	
024	Nocardia asteroides	+	+	+	
025	Rhodoglobus sp	+	-	-	
026	Lelliottia amnigena	+	-	-	
027	Lelliottia amnigena	+	-	-	
029	Mycobacterium chelonae	+	-	-	
031	Shewanella baltica	+	-	-	
032	Flavobacterium tructae	+	-	-	

UNIQUE GUT MICROBIOME



Contents lists available at ScienceDirect

Aquaculture

journal homepage: www.elsevier.com/locate/aquaculture

B. Cheaib a,b,*, P. Yang c, R. Kazlauskaite a, E. Lindsay a, C. Heys a, T. Dwyer a, M. De Noia a, Patrick Schaal a, W. Sloan b, U.Z. Ijaz b, M.S. Llewellyn

m/ismej

ARTICLE OPEN

Co-diversification of an intestinal Mycoplasma and its salmonid host

Sustainable Aquaculture Systems Supporting Atlantic Salmon

Jacob A. Rasmussen (1)^{1,2 M}, Pia Kiilerich³, Abdullah S. Madhun⁴, Rune Waagbø^{4,7}, Erik-Jan R. Lock⁴, Lise Madsen⁴, M. Thomas P. Gilbert (1)^{2,5}, Karsten Kristiansen (1)^{1,6} and Morten T. Limborg^{2 M}

© The Author(s) 2023

© 2002 Oxford University Press

Nucleic Acids Research, 2002, Vol. 30, No. 23 5293-5300

The complete genomic sequence of Mycoplasma penetrans, an intracellular bacterial pathogen in humans

Yuko Sasaki*, Jun Ishikawa¹, Atsushi Yamashita², Kenshiro Oshima^{2,3}, Tsuyoshi Kenri, Keiko Furuya², Chie Yoshino², Atsuko Horino, Tadayoshi Shiba², Tsuguo Sasaki and Masahira Hattori^{2,4}

Department of Bacterial Pathogenesis and Infection Control, National Institute of Infectious Diseases, 4-7-1, Gakuen, Musashimurayama, Tokyo, Japan, ¹Department of Bioactive Molecules, National Institute of Infectious Diseases, 1-23-1, Toyama, Shinjyuku-ku, Tokyo, Japan, ²School of Science, Kitasato University, 1-15-1, Kitasato, Sagamihara, Kanagawa, Japan, ³Hitachi Instruments Service Company, Limited, 4-28-8, Yotsuya, Shijyuku-ku, Tokyo, Japan and ⁴Human Genome Research Group, Genomic Sciences Center, RIKEN Yokohama Institute, 1-7-22, Suehiro-cyo, Tsurumi-ku, Yokohama, Kanagawa, Japan

a Institute of Biodiversity, Animal Health and Comparative Medicine, Graham Kerr Building, University of Glasgow, Glasgow G12 8QQ, United Kingdom

^b School of Engineering, University of Glasgow, Glasgow G12 8QQ, United Kingdom

^c Laboratory of Aquaculture, nutrition and feed, Fisheries College, Ocean University of China, Hongdao Rd, Shinan District, Qingdao, Shandong, China

A. Y ACCOMPLISHMENTS

- IMET FINISHED A DIET STUDY COMPARING BLACK SOLDIER FLY MEAL DIET TO A FISHMEAL-FREE SOY MEAL DIET USING AN ALL-FEMALE STRAIN OF ATLANTIC SALMON DESIGNED BY BENCHMARK GENETICS FOR RAS ENVIRONMENTS; A SINGLE-SEX STRAIN ALLOWS US TO STANDARDIZE EXPERIMENTAL CONDITIONS. WE ARE NOW PULLING TO PUBLICATION THE TWO DIETS STUDIES.
- RESULTS OF DIET TRIALS WITH BLACK SOLDIER FLY INDICATE THAT THE FEED FORMULATION DOES NOT ENLARGE THE SPLEEN, A STARK CONTRAST TO WHAT HAD BEEN OBSERVED IN PREVIOUS STUDIES USING YELLOW MEALWORM (REPORTED IN YEAR 2). FEEDS WERE TESTED FOR MYCOTOXINS (COMPOUNDS PRODUCED BY CERTAIN MOLDS) AS A POSSIBLE SOURCE OF SPLEEN ENLARGEMENT, BUT NO SIGNIFICANT LEVELS WERE FOUND IN YELLOW MEALWORM FEEDS.
- THE UNIVERSITY OF MARYLAND SCHOOL OF MEDICINE (UMD-SM) COLLECTED AND ANALYZED 150+ MICROBIAL SAMPLES FROM RAS AT IMET USING METAGENOMIC ANALYSIS, A COMPREHENSIVE METHOD TO STUDY ALL GENETIC MATERIAL IN A SAMPLE. THIS REVEALED A DIVERSE MICROBIAL ECOSYSTEM IN THE RAS, INCLUDING NOTABLE BACTERIA LIKE STENOTROPHOMONAS (94-96% SIMILARITY), SHEWANELLA (94% SIMILARITY), AND STAPHYLOCOCCUS (93-97% SIMILARITY). ANALYSIS OF BACTERIAL ISOLATES WILL CONTINUE INTO 2025 AND WILL BE SHARED IN THE YEAR 4 REPORT.
- ADDITIONALLY, 165 RRNA GENE SEQUENCING (A METHOD TO IDENTIFY BACTERIA BY THEIR GENETIC 'FINGERPRINT') REVEALED A DOMINANCE OF MYCOPLASMA PENETRANS BACTERIA IN THE SALMON'S MID INTESTINE, PROVIDING CRUCIAL INSIGHT INTO HOW DIFFERENT FEEDS MAY INFLUENCE THE FISH'S GUT MICROBIOME A KEY FACTOR IN FISH HEALTH AND GROWTH IN AQUACULTURE SYSTEMS.

